Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
Christopher Manning | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
peopleFaculty,Senior Fellow

Christopher Manning

Thomas M. Siebel Professor of Machine Learning in the Departments of Linguistics and Computer Science | Associate Director and Senior Fellow, Stanford HAI

Topics
Natural Language Processing
Chris Manning headshot
External Bio

Christopher Manning is the inaugural Thomas M. Siebel Professor in Machine Learning in the Departments of Linguistics and Computer Science at Stanford University, Director of the Stanford Artificial Intelligence Laboratory (SAIL), and an Associate Director of the Stanford Institute for Human-Centered Artificial Intelligence (HAI). From 2010, Manning pioneered Natural Language Understanding and Inference using Deep Learning, with impactful research on sentiment analysis, paraphrase detection, the GloVe model of word vectors, attention, neural machine translation, question answering, self-supervised model pre-training, tree-recursive neural networks, machine reasoning, dependency parsing, and summarization, work for which he has received two ACL Test of Time Awards and the IEEE John von Neumann Medal (2024). He earlier led the development of empirical, probabilistic approaches to NLP, computational linguistics, and language understanding, defining and building theories and systems for Natural Language Inference, syntactic parsing, machine translation, and multilingual language processing, work for which he won ACL, Coling, EMNLP, and CHI Best Paper Awards. In NLP education, Manning coauthored foundational textbooks on statistical approaches to NLP (Manning and Schütze 1999) and information retrieval (Manning, Raghavan, and Schütze, 2008), and his online CS224N Natural Language Processing with Deep Learning course videos have been watched by hundreds of thousands. In linguistics, Manning is a principal developer of Stanford Dependencies and Universal Dependencies, and has authored monographs on ergativity and complex predicates. He is the founder of the Stanford NLP group (@stanfordnlp) and was an early proponent of open source software in NLP with Stanford CoreNLP and Stanza. He is an ACM Fellow, a AAAI Fellow, and an ACL Fellow, and a Past President of the ACL (2015). Manning has a B.A. (Hons) from The Australian National University, a Ph.D. from Stanford in 1994, and an Honorary Doctorate from U. Amsterdam in 2023. He held faculty positions at Carnegie Mellon University and the University of Sydney before returning to Stanford.

Share
Link copied to clipboard!

Latest Related to Christopher Manning

Research

Generative AI: Perspectives from Stanford HAI

Russ Altman, Erik Brynjolfsson, Michele Elam, Surya Ganguli, Daniel E. Ho, James Landay, Curtis Langlotz, Fei-Fei Li, Percy Liang, Christopher Manning, Peter Norvig, Rob Reich, Vanessa Parli
Generative AIDeep DiveMar 01

A diversity of perspectives from Stanford leaders in medicine, science, engineering, humanities, and the social sciences on how generative AI might affect their fields and our world

conference

2022 HAI Spring Conference on Key Advances in Artificial Intelligence

Apr 12, 20228:45 AM - 5:00 PM

The HAI Spring Conference will explore three key advances in artificial intelligence – accountable AI, foundation models, and embodied AI in virtual and real worlds – as well as what the future of this technology might hold.

conference

2020 Fall Conference on Triangulating Intelligence: Melding Neuroscience, Psychology, and AI

Oct 07, 20209:00 AM - 3:30 PM